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Learning from the Failure of Autonomous and Intelligent
Systems: Accidents, Safety, and Sociotechnical Sources of
Risk

Carl Macrae ∗

Efforts to develop autonomous and intelligent systems (AIS) have exploded across a range
of settings in recent years, from self-driving cars to medical diagnostic chatbots. These have
the potential to bring enormous benefits to society but also have the potential to introduce
new—or amplify existing—risks. As these emerging technologies become more widespread,
one of the most critical risk management challenges is to ensure that failures of AIS can be
rigorously analyzed and understood so that the safety of these systems can be effectively gov-
erned and improved. AIS are necessarily developed and deployed within complex human,
social, and organizational systems, but to date there has been little systematic examination of
the sociotechnical sources of risk and failure in AIS. Accordingly, this article develops a con-
ceptual framework that characterizes key sociotechnical sources of risk in AIS by reanalyzing
one of the most publicly reported failures to date: the 2018 fatal crash of Uber’s self-driving
car. Publicly available investigative reports were systematically analyzed using constant com-
parative analysis to identify key sources and patterns of sociotechnical risk. Five fundamental
domains of sociotechnical risk were conceptualized—structural, organizational, technologi-
cal, epistemic, and cultural—each indicated by particular patterns of sociotechnical failure.
The resulting SOTEC framework of sociotechnical risk in AIS extends existing theories of
risk in complex systems and highlights important practical and theoretical implications for
managing risk and developing infrastructures of learning in AIS.
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1. INTRODUCTION

“I became tired of the ever-repeated robot plot. I
didn’t see robots that way. I saw them as machines—
advanced machines—but machines. They might be
dangerous but surely safety factors would be built
in. The safety factors might be faulty or inadequate
or might fail under unexpected types of stresses, but
such failures could always yield experience that could
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be used to improve the models. After all, all devices
have their dangers.”

—Isaac Asimov, 1990

“I think people should be really concerned about
it… I keep sounding the alarm bell but, you know,
until people see robots going down the street, killing
people, they don’t know how to react because it
seems so ethereal. I think we should be really con-
cerned about AI.”

—Elon Musk, 2017

People have started to see robots going down
the street, killing people. In March 2018, a computer-
driven autonomous vehicle being tested by Uber on
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the streets of Tempe, Arizona, hit and killed a pedes-
trian who was crossing the road pushing a bicycle
(NTSB, 2019a). A few days later a Tesla Model X
driving under the guidance of its “Autopilot” au-
tomated driver assistance system drifted out of its
lane near a junction and hit a barrier, killing the
driver (NTSB, 2020a). These events followed a fa-
tal collision when a Tesla Model S was driven un-
der the side of a truck by its Autopilot system in
2016 (NTSB, 2017)—a sequence repeated by a Tesla
Model 3 in 2019 (NTSB, 2020b). These accidents all
involved computer-guided cars employing artificial
intelligence to perform tasks that would previously
have been the sole responsibility of a human driver.
As such, they represent some of the most visible and
lethal failures that have emerged from recent efforts
to develop autonomous and intelligent systems.

Autonomous and intelligent systems (AIS) en-
compass a wide range of technologies that are able
to instantiate various aspects of intelligent and self-
directed behavior (IEEE, 2019). This can involve
perceiving, predicting, planning, and performing in
some particular environment—such as driving on
public roads—or in relation to some particular prob-
lem, such as determining whether a skin lesion
is cancerous or not (Tschandl et al., 2020). The
field is currently undergoing something of an explo-
sion. Progress has dramatically accelerated in recent
years in part due to advances in key areas of arti-
ficial intelligence—particularly deep learning artifi-
cial neural networks (Russell, 2019)—together with
the ready availability of enormous quantities of data
and huge increases in computational power (Sto-
ica et al., 2017). High profile public demonstrations
have shown intelligent machines performing at su-
perhuman levels in complex games such as Go (Sil-
ver, Schrittwieser, & Simonyan, 2017) and Quake III
(Jaderberg, Czarnecki, & Dunning, 2019), and enor-
mous investments have been made in attempts to de-
velop and deploy large fleets of autonomous vehicles
(Davies, 2021). Meanwhile, efforts are underway to
incorporate AIS into many of the critical systems that
modern society depends upon, from medical diagno-
sis (Fauw et al., 2018), to public transport (Mouratidis
& Serrano, 2021), to financial trading (FCA, 2019),
to care of the elderly (Abdi, Al-Hindawi, & Ng,
2018).

These rapid and widespread developments in
AIS have the potential to bring enormous benefits
to society but they also have the potential to intro-
duce new—or amplify existing—risks to the safety of
critical systems like healthcare and transportation. To

maximize the benefits of AIS it will be necessary to
ensure that these risks are robustly analyzed, gov-
erned, and regulated. One of the most critical risk
management challenges is to ensure that the failures
of AIS can be reliably identified, rigorously analyzed,
and widely learnt from, so that the risks associated
with these emerging technologies can be better un-
derstood and safety can be continuously improved
(Macrae, 2019a). Learning from the failures of AIS is
particularly urgent because many of these new tech-
nologies remain at early stages of experimentation
and development—and some of those experiments
are being conducted in the public arena and placing
citizens at direct risk, such as self-driving cars learn-
ing by trial and error on public streets (Stilgoe, 2020)
and medical triage chatbots being deployed and up-
dated after encounters with real patients and con-
cerned doctors (Lintern, 2021).

AIS technologies are developed and deployed
within complex human, social, and organizational
systems and the risks associated with AIS are there-
fore thoroughly sociotechnical (Salmon, Carden, &
Hancock, 2020). However, the focus of much work
to date has primarily been on defining broad ethi-
cal principles (Jobin, Ienca, & Vayena, 2019; IEEE,
2019), exploring issues of accountability and liability
(Morley et al., 2020; Pöllänen, Read, Lane, Thomp-
son, & Salmon, 2020), and addressing technical as-
pects of assurance (Brundage, Avin, & Wang, 2020;
Hawkins et al., 2021). There has been little sys-
tematic consideration of the complex sociotechnical
sources of risk and failure in AIS, or the organiza-
tional infrastructures required to learn from those
failures (Bryson & Winfield, 2017; Elish, 2019; Stil-
goe, 2018; Winfield & Jirotka, 2017). Accordingly,
this article aims to explore and characterize the na-
ture of sociotechnical risk in autonomous and intel-
ligent systems by reanalyzing Uber’s 2018 fatal au-
tonomous vehicle accident (NTSB, 2019a), drawing
on sociotechnical theories of risk and safety in com-
plex systems. The overarching objective of this analy-
sis is to develop an empirically grounded and theoret-
ically informed framework that defines fundamental
sources and patterns of sociotechnical risk that can
threaten the safety of AIS, and which may be used to
better understand the infrastructures needed to man-
age those risks and learn from AIS failure. The article
concludes by exploring proposals for research, policy,
and practice that may help move toward Asimov’s
(1990) aspirational future in which the failures of au-
tonomous and intelligent systems will always yield
experience that can be used to improve safety.

 15396924, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.13850 by T

est, W
iley O

nline L
ibrary on [21/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Sociotechnical Risk and Autonomous Systems 2001

2. THE AUTONOMY EXPLOSION AND THE
EVOLUTION OF SOCIOTECHNICAL RISK

Efforts to develop AIS technologies have ex-
ploded across a range of settings in recent years, from
software-based agents that crawl the internet (Rus-
sell & Norvig, 2016) to robotic “embodied artificial
intelligences” that walk the world (Winfield, 2012).
These technologies are designed to act with some de-
gree of autonomy and intelligence: that is, to be capa-
ble of engaging in some form of independent reason-
ing to produce behaviors that solve some specific ob-
jective without real-time human input. In healthcare,
AIS are being developed to diagnose cancer (Ardila,
Kiraly, & Bharadwaj, 2019), predict the onset of seri-
ous illness (Tomašev, Glorot, & Rae, 2019), and pro-
vide advice to patients (Babic, Gerke, & Evgeniou,
2021). In transport, self-driving cars (Krafcik, 2020),
buses (Yu, 2021), and delivery robots (Heinla, 2021)
already navigate public roads. In infrastructure, arti-
ficial intelligence manages energy networks (Evans
& Gao, 2016) and in finance, AIS support algorith-
mic trading, credit scoring, and fraud detection (Chan
et al., 2019). This autonomy explosion is striking in
terms of the speed, scale, and variety of efforts under-
way to develop and deploy AIS. It is also striking be-
cause many of the target applications are within crit-
ical systems, in which failures pose significant risks
to safety (Cummings, 2021). For instance, failures in
healthcare advice chatbots may cause considerable
harm if serious conditions are missed (Fraser, Coiera,
& Wong, 2018). Failures in the ability of automated
cars to recognize and avoid pedestrians or other haz-
ards have already been fatal (NTSB, 2017, 2019a).
Even momentary failures of small delivery robots
have posed serious threats to public safety when they
struggle to cross busy roads and trap wheelchair users
in the path of oncoming vehicles (Ackerman, 2019).

Managing the safety of AIS is essential to build-
ing trust in these emerging technologies, but the
safety implications of AIS are complex and re-
main poorly understood. Simplistic claims that AIS
will reduce risk by removing fallible humans have
been used to justify the rapid deployment of ex-
perimental systems with limited regulatory oversight
(Dixon, 2020; Levin, 2016a; Mider, 2019; Ross, 2018).
This ignores the inherently sociotechnical nature
of AIS: that all technologies are designed, devel-
oped, built, deployed, maintained, supervised, oper-
ated, and governed by people (Reason, 1997); and
those people necessarily work within, and are shaped
by, complex social, cultural, and organizational pro-

cesses (Hopkins, 2005; Pettersen Gould, 2021; We-
ick, 1987). Rather than removing the risks of hu-
man fallibility, AIS will instead transform and relo-
cate the work of humans and their role as sources
of both risk and safety in complex systems (Han-
cock, 2017; Murphy & Woods, 2009). The broad-
based emergence of AIS therefore points to a new
phase in the evolution of sociotechnical risk that
will further complicate, rather than eliminate, hu-
man and social entanglements in technological safety
(Bainbridge, 1983; Bradshaw, Bradshaw, Hoffman, &
Woods, 2013; Salmon et al., 2020; Sarter, Woods, &
Billings, 1997). A range of theories seek to explain
the social, organizational, and technological pro-
cesses involved in the failure of complex systems, en-
compassing organizational structure (Perrow, 1984),
human activity (Reason, 1990), technological con-
trol (Leveson, 2011), and cultural incubation (Turner,
1976; Weick & Sutcliffe, 2003). These theories offer
a rich and diverse conceptual foundation for under-
standing the emergence of failure and the nature of
sociotechnical risk in AIS.

2.1. Robots Going Down the Street

One of the most visible and safety-critical ap-
plications of AIS is the development of self-driving
cars, or autonomous vehicles (AV), designed to
navigate from one place to another using a network
of sensors, processors, and actuators that perform
functions such as object detection, path prediction,
motion planning, and hazard avoidance (NTSB,
2019b; Uber ATG, 2018a). At 9:58 p.m. on March
18th, 2018 in Tempe, Arizona, an AV being devel-
oped and tested on public roads by Uber’s Advanced
Technologies Group (ATG) fatally failed. Uber’s AV
collided with and killed Elaine Herzberg, who was
pushing her bicycle across the street outside of a des-
ignated crossing area (NTSB, 2018). The AV made
no attempt to brake or avoid Herzberg. The vehicle
operator, responsible for monitoring the vehicle and
intervening when necessary, did not apply the brakes
until after Herzberg had been hit (NTSB, 2019a).
The severity of the event—and its novelty and impor-
tance as the first pedestrian death involving an AV
(Niedermeyer, 2019)—resulted in extensive media
reporting, a lengthy federal accident investigation by
the National Transportation Safety Board (NTSB,
2019a), and two safety reviews commissioned by
Uber (Uber ATG, 2018b). Together, these revealed
a range of contributory factors that arose not just in
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Table I. Summary of Uber’s Fatal Self-driving Collision with a Pedestrian, March 18th, 2018

Uber’s Fatal Self-driving Crash: a Descriptive Summary

The crash
At 9:58 p.m. on March 18th, 2018 in Tempe, Arizona, one of Uber’s autonomous test vehicles collided with Elaine Herzberg as she
pushed her bicycle across a road, causing fatal injuries. The car, a modified Volvo XC90, was being driven autonomously by a self-driving
system (SDS) and monitored by a single vehicle operator. The car was traveling at 39 mph at the point of collision and made no attempt
to stop. The vehicle operator did not apply the brakes until 0.7 seconds after impact (NTSB, 2019a). This was nearly a close call: police
investigators calculated that Elaine Herzberg only needed time to walk an additional 2.1 feet to cross safely in front of the car (Stern,
2018).

Automated driving
The SDS consisted of an array of sensors, software, and hardware that gathered and processed data about the environment to
understand the car’s location, identify objects and track and predict their movement, and plan and control the vehicle’s motion and route
(Uber, 2018a). Detected objects were classified and multiple paths were predicted based on tracking history and assumed goals. If a
hazard was identified (e.g., an object in the vehicle’s path) the motion plan was altered or emergency hazard avoidance initiated (NTSB,
2019a).

The SDS detected the pedestrian 5.6 seconds before the impact but failed to correctly classify or predict her path, switching between
classifications of “vehicle,” “bicycle,” and “other” (NTSB, 2019b). When an object was reclassified, historical path data became
unavailable for path prediction. The system was also not designed to assign a goal to “other” objects or jaywalking pedestrians, relying on
continuous tracking data to predict a path. So, when the pedestrian was detected as an “other” object in the vehicle’s lane 1.5 seconds
before impact, the SDS considered this to be a static object and just slightly altered the motion plan (NTSB, 2019a).

At 1.2 seconds before impact the SDS reclassified the object as a bicycle and determined this was an emergency. However, an “action
suppression” function delayed any emergency actions by 1 second, to check the hazard was not a false alarm and reduce the frequency of
extreme braking events (NTSB, 2019b). The vehicle operator was not alerted that an emergency had been detected. Action suppression
ended 0.2 seconds before impact, at which point the operator was alerted by an auditory alarm. The SDS was not designed to activate
emergency braking if a crash was determined to be imminent—which it now was—as it was assumed that vehicle operators would
intervene to avoid or mitigate the impact of a collision (NTSB, 2019a). Volvo’s own in-built emergency braking system was disabled when
the SDS was active (NTSB, 2019b).

Vehicle development and testing
Uber had 40 test vehicles in Tempe which had driven this particular test circuit on public roads around 50,000 times (NTSB, 2019a).
Human operators were relied on to monitor for failures and intervene in emergencies. Vehicle operators received three weeks of
classroom and practical training that emphasized vehicle-handling skills and scanning for hazards such as jaywalking pedestrians, which
operators encountered regularly during testing (NTSB, 2019a). The number of operators per vehicle had been reduced from two to one
in October 2017 (NTSB, 2019a), and a team of specialist vehicle operators who tested the cars in difficult situations was disbanded
(Wakabayashi, 2018).

The operator involved in the collision had 152 hours experience in autonomous mode (NTSB, 2019a). The in-car camera showed the
operator was not constantly monitoring the road. She was looking down, away from the road, for 34% of the 31.5 minutes the vehicle was
moving and 23 times in the 3 minutes prior to the collision (NTSB, 2019a; 2019f). Records indicate her phone was streaming a TV show
(NTSB, 2019a). No formalized or automated systems were in place to monitor the vigilance of vehicle operators (NTSB, 2019a). Vehicle
operator shifts were around 8 hours with a requirement to take a 20–40 minutes break after 4.5 hours of continuous driving (NTSB,
2019a). No fatigue risk management system was in place (NTSB, 2019e) and there were reports of drivers feeling pressured to maximize
miles driven (Bort, 2018d).

Uber had no safety management system, no formal safety plans, and no dedicated safety manager to oversee the operational safety of its
testing activities (NTSB, 2019a). New software could be deployed for testing on public roads without passing a defined set of track tests
or formal safety requirements (NTSB, 2019e; Uber, 2018b). Vehicle operators and other staff were not able to halt testing if they
identified a safety concern, and there were reports that safety incidents and concerns were not always rapidly acted on (Bort, 2018d;
Efrati, 2018c). Uber had chosen Arizona for AV testing in part due to its limited regulation proudly proclaimed by its Governor, after
California revoked Uber’s licenses for flouting its regulations (Harris, 2018; Levin, 2016b, 2016b; Randazzo, 2019; Wong, 2016a, 2016b).

the functioning of the underlying technologies but
in the social, cultural, and organizational practices
of designing, supervising, managing, and developing
those technologies (Table I). The extensive scrutiny

of the Uber crash, coupled with the breadth and va-
riety of safety weaknesses identified (Niedermeyer,
2019; Stanton, Salmon, Walker, & Stanton, 2019),
has produced one of most detailed public analyses
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of AIS failure to date, providing a unique case for
developing an extensive analysis of the sociotechni-
cal sources of risk in AIS.

3. METHODS AND APPROACH

The overarching aim of this analysis was to de-
velop a theoretical framework that defined and char-
acterized fundamental sources of sociotechnical risk
in AIS, using the Uber event as a focused case
study (Eisenhardt, 1989). Accordingly, the analyti-
cal approach adopted was qualitative and oriented to
conceptual development. Public investigative reports
on the Uber event were analyzed through constant
comparative analysis (Glaser & Strauss, 1967; Locke,
2001; Strauss & Corbin, 1998)—an iterative coding
process in which qualitative data on the event was
systematically reviewed, categorized, and conceptu-
alized to develop a higher-order theoretical account
of the key contributory processes and sociotechnical
patterns involved in the Uber crash (Turner, 1981,
1983). This analytical coding process was purpose-
fully sensitive to existing sociotechnical theories of
risk, accidents, and safety (e.g., Perrow, 1984; Turner,
1976, 1978; Vaughan, 1996), and sought to build a the-
oretical framework that integrated and extended cur-
rent accounts of sociotechnical risk (Glaser, 1978).
The analysis proceeded in three interrelated phases.
First, key investigative reports on the Uber event
were identified through searches of the NTSB’s Ac-
cident Docket database (NTSB, 2021), Uber corpo-
rate websites, and reputable media outlets. A total
of 48 reports were identified, including official inves-
tigation report materials and corporate documenta-
tion, supplemented by a set of in-depth news reports
that provided detailed information and context, in-
terviews with current and former staff, and public dis-
closure of some additional corporate materials (see
Table II). Second, all reports and materials were an-
alyzed to identify and code key factors and processes
in the development of the Uber event. This quali-
tative coding proceeded in several cyclical stages. It
began with “initial” coding of each report to iden-
tify, label, and define all relevant aspects of the Uber
event. It then moved to a process of “core” coding
that compared, combined, and organized these ini-
tial codes into a smaller number of higher-order con-
cepts of AIS failure. Analysis moved between these
stages of initial and core coding until all investigative
reports had been analyzed and a conceptually coher-
ent coding structure emerged that could account for
and explain all the key patterns of failure described

in the data. Finally, the resulting coding framework
was reviewed and compared with foundational con-
cepts and theories in the extant literature, and further
refined and organized into an overarching theoret-
ical framework structured around five core sources
of sociotechnical risk with each illustrated by a
range of indicative patterns of sociotechnical failure.
Given the contemporaneous and contested nature
of some of the public reporting on the Uber event,
the emerging nature of the field of AIS, and the an-
alytical focus on a single case study, the theoreti-
cal framework developed here is necessarily provi-
sional and represents an initial process of theorizing,
rather than a single settled and final theory (Weick,
1995).

4. SOCIOTECHNICAL SOURCES OF RISK IN
AUTONOMOUS AND INTELLIGENT
SYSTEMS

Analyzing publicly available reporting on the
2018 Uber AV crash allows the characterization of
five fundamental sources of sociotechnical risk in
AIS, each indicated by a range of particular patterns
of sociotechnical failure. Structural sources of risk
arise from interdependencies and interactions be-
tween different parts of the technical and social struc-
tures that constitute AIS. Organizational sources of
risk arise from the social processes, organizing activi-
ties, and human and contextual factors that underpin
AIS. Technological sources of risk arise from the ca-
pabilities, affordances, and constraints inscribed into
and produced by the material technologies of AIS.
Epistemic sources of risk arise from the ways that
knowledge and ignorance are constructed in relation
to, and within, AIS. Cultural sources of risk arise
from the collective values, beliefs, norms, and prac-
tices that surround and shape AIS. Taken together,
these domains of structural, organizational, techno-
logical, epistemic, and cultural risk form a SOTEC
framework of sociotechnical risk in AIS (Fig. 1).
Each of these five intersecting domains draws on a
distinct theoretical lineage and provides a broad con-
ceptual lens through which to identify and under-
stand specific sources and patterns of sociotechnical
risk in AIS.

4.1. Structural Sources of Risk

The structure of a sociotechnical system deter-
mines how different parts of the system interact
with each other, and shapes how failures evolve.
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Table II. Public Sources of Data and Evidence Drawn on to Analyze the Uber Crash

Public Reporting on Uber’s Fatal Self-driving Crash

Federal investigation materials
The National Transportation Safety Board (NTSB) produced a final major investigation report and alongside this published 43 analytical
documents and data sheets in the public “accident docket,” as well as a set of documents presented at to the public Board meeting that
concluded the investigation. Eighteen core investigative documents were analyzed:

Final and summary accident reports (2 reports) Final accident report (NTSB, 2019a); Preliminary accident
report (NTSB, 2018)

Specialist factual reports (6 reports) Vehicle Automation Report (NTSB, 2019b); Highway Factors
Report (NTSB, 2019c); Vehicle Factors Report (NTSB,
2019d); Operations Factors Report (NTSB, 2019e); Human
Performance Report (NTSB, 2019f); Onboard Image and
Data Recorder Report (NTSB, 2019g)

Party submissions to investigation (3 reports) Uber ATG submission (NTSB, 2019h); Volvo Cars submission
(NTSB, 2019i); Thatcham safety test submission (NTSB,
2019j)

Board meeting presentations (7 reports) Board Meeting Summary (NTSB, 2019k); Opening Statement
(NTSB, 2019l); Crash overview (NTSB, 2019m); Pedestrian
and vehicle operator (NTSB, 2019n); Managing risk of ADS
testing (NTSB, 2019o); Uber ATG operations (NTSB,
2019p); Testing automated vehicles (NTSB, 2019q)

Corporate safety reviews
Uber conducted an internal safety review and commissioned an external safety review from a team led by a former leader of the NTSB.
The findings and recommendations of these reviews were published alongside Uber’s annual public safety report. Further background
information was provided in related company blog posts.

Uber safety reviews (3 reports) Annual public safety report (Uber ATG, 2018a); Internal and
external reviews (Uber ATG, 2018b); Independent safety
review (Hart, Dombroff, & Tochen, 2018)

Uber corporate blog posts (4 reports) Self-driving launch (Uber ATG, 2016); Learning from the past
(Uber ATG, 2018c); Principled approach to safety (Uber
ATG, 2018d); Groundwork for self-driving safety (Uber
ATG, 2019)

Investigative press reporting
A set of press reports presented detailed, substantive, and new information on the background to the crash and the organizational context
and culture at Uber ATG not explored by the NTSB investigation or corporate reviews. These press reports were well-sourced, with
many based on multiple company sources. Several reports publicly disclosed the details of emails, presentations, and other relevant
materials and company data.

Historical reporting on Uber safety (6 reports) Carson (2016); Levin (2016a); Levin (2016b); Wong (2016a);
Wong (2016b); Nguyen (2017)

Reporting on reasons for the crash (9 reports) Wakabayashi (2018); Harris (2018); Efrati (2018a); Efrati
(2018b); Stern (2018); Bort (2018a); Efrati (2018c);
Randazzo (2019); Bort (2018b)

Reporting on context and response (8 reports) Bort (2018c); Bort (2018d); Bort (2019); Efrati (2019a); Efrati
(2019b); Efrati (2020); Marshall (2018); Wakabayashi and
Conger (2018)

Structural arrangements can act as sources of risk in
AIS by amplifying or transmitting local failures in
ways that disable the entire system. The Uber AV
accident emerged from structurally interlinked fail-
ures that interacted across different parts and at dif-
ferent scales of the system, encompassing the design
of the self-driving system (SDS), the role of vehicle
operators, the decisions of engineers and managers,
the processes of vehicle testing, and the actions of
other road users and regulators. The structural char-

acteristics of this sociotechnical system allowed fail-
ures in one area to rapidly degrade or impact on
other parts of the system. Prior theoretical accounts
of structural risks in sociotechnical systems have fo-
cused on two key properties: complexity and cou-
pling (Perrow, 1999, 2011; Sagan, 1995). High levels
of interactive complexity—where many activities or
components interact in unpredictable ways—means
that disruptions in one part of a system can dramati-
cally enlarge by impacting the performance of many
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Fig 1. SOTEC framework of sociotechnical sources of risk

other parts in ways that are hard to predict (Hulme,
Stanton, Walker, Waterson, & Salmon, 2021; Weick,
2004). High levels of coupling—where components
or activities in one part of a system are heavily de-
pendent on those in other parts—means that failures
can rapidly cascade through systems in ways that are
difficult to avert (Downer, 2009, Hulme et al., 2021).
The inherent potential for rapid and unpredictable
escalations of failure means that catastrophic sys-
tem breakdowns may be inevitable—or “normal”—
in interactively complex and tightly coupled systems
(Gephart, 2004; Perrow, 1999).

A range of structural characteristics contributed
to the Uber AV accident, illustrating a number of
structural patterns of risk that can emerge in AIS
(Table III). An action suppression function that
delayed the vehicle responding to perceived hazards
(NTSB, 2019a) allowed a minor disruption—a pedes-
trian crossing the road—to quickly amplify and grow
into a critical situation (“disruption amplifiers”). The
functional structure of the SDS meant that repeated
failures of the perception system to correctly cate-
gorize the pedestrian then prevented the prediction
system from calculating a predicted path for the
hazard, and once the pedestrian was in front of
the vehicle the motion planning system was unable
to apply emergency brakes (NTSB, 2019b) as that
function was disabled in situations when collisions

were deemed imminent (“failure cascades”). The
functional safety of the vehicle and the role of vehi-
cle operators were heavily predicated on capacities
for ongoing, real-time—and inherently unreliable—
human vigilance (NTSB, 2019a) and intervention
(“vigilance dependencies”). And the structure of the
vehicle development and testing program was highly
permissive, allowing the rapid and regular deploy-
ment of new iterations of the autonomy software on
public roads with few controls (NTSB, 2019e; Uber
ATG, 2018b), meaning that weaknesses in software
development were tightly coupled to on-road vehicle
behavior (“test permeabilities”). These structural
properties meant that algorithmic failures could
cascade directly onto the street and escalate rapidly
into catastrophic operational failure.

4.2. Organizational Sources of Risk

Organizational activities can act as sources of
risk in AIS, particularly when organizational contexts
are insensitive to human performance characteris-
tics and organizational processes are ineffective at
detecting and managing errors and disruptions. A
network of organizational, contextual, and human
factors contributed to the Uber AV accident, includ-
ing weaknesses in supervisory systems, gaps in safety
expertise and leadership, poor human–machine
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2006 Macrae

Table III. Definitions of Structural Patterns of Risk in Autonomous and Intelligent Systems and Illustrative Examples from Public
Reporting on the Uber Autonomous Vehicle Crash

Structural Patterns of Sociotechnical Risk

Disruption amplifiers

System features which cause disruptions or failures to enlarge, expand or develop into more critical situations which are harder to
deal with or recover from.

Example: Action suppression functions in the Uber self-driving system (SDS) prevented the vehicle responding to any perceived
hazard for 1 second, in case the perception system had generated a false alarm or a hazard resolved itself (NTSB, 2019a, 2019b).
However, when a persistent hazard did exist, action suppression could allow a situation to grow more critical and make a collision
harder to avoid.

Failure cascades

Structural characteristics that allow interlinked failures to cascade rapidly through interdependent functions of a system with few
opportunities for identification or intervention.

Example: The Uber SDS failed multiple times to correctly classify a pedestrian crossing the road (NTSB, 2019b), which prevented
a predicted path being assigned, which precluded the vehicle taking early avoiding action, while action suppression rules
prevented an immediate response once a hazard was detected, exacerbated by the prevention of emergency braking when a
collision was deemed imminent (NTSB, 2019a).

Vigilance dependencies

System functions that rely on active, real-time, moment-by-moment human vigilance to monitor automated behavior and detect and
address failures.

Example: Uber confirmed to accident investigators that the developmental SDS depended on an attentive vehicle operator to
monitor and intervene if the system fails (NTSB, 2019a), and publicly claimed that Californian self-driving regulations were not
appropriate as their vehicles required a human operator at the controls at all times (Uber ATG, 2016).

Test permeabilities

New iterations of developmental or operational autonomous systems are released for testing into the public domain with few safety
controls, criteria, or assurance processes.

Example: Processes for requesting and conducting testing of the Uber SDS on public roads did not incorporate integrated safety
assessments or requirements to meet a set of performance standards in on-track testing prior to on-road testing (NTSB, 2019e;
Uber ATG, 2018b), with little formal guidance or safety criteria defining levels of acceptable system performance prior to release
onto public roads (Efrati, 2018c).

interfaces, and the absence of formalized safety man-
agement systems or regulatory requirements. These
factors reduced or removed organizational capacities
to prevent, catch, or correct failures. Prior theoretical
approaches to organizational risk in sociotechnical
systems consider errors, failures, and fluctuations to
be inherent to all organized activity, and therefore
focus on the organizational mechanisms needed to
prevent or recover from disruption (Pettersen Gould,
2021; Rasmussen, 1990; Reason, 1997; Roe & Schul-
man, 2008). These mechanisms are typically concep-
tualized as safety defenses or barriers (Hollnagel,
2004; Reason, 1990; Svenson, 1991)—ranging from
“hard” defense such as physical barriers or multiple
back-up systems to “soft” defense such as procedural
controls or training programs (Reason, Hollnagel,

& Paries, 2006)—or as capacities for resilience that
enable rapid identification and flexible adaptation
to unexpected events (Hollnagel, Paries, Woods, &
Wreathall, 2012; Macrae, 2014a; Wiig et al., 2020).
Defenses and adaptations will themselves always be
partial or fallible, with weaknesses arising from latent
organizational factors such as poorly designed equip-
ment or inadequate resourcing. Organizational safety
therefore depends on multiple layers of defense or
diverse capabilities for resilience (Rasmussen, 1997;
Reason, 1997), and catastrophic system failures oc-
cur when a range of factors combine to overwhelm
these safety defenses and adaptive capacities.

Various organizational weaknesses and human
and contextual factors contributed to the Uber
AV accident and illustrate a set of organizational
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Sociotechnical Risk and Autonomous Systems 2007

Table IV. Definitions of Organizational Patterns of Risk in Autonomous and Intelligent Systems and Illustrative Examples from Public
Reporting on the Uber Autonomous Vehicle Crash

Organizational Patterns of Sociotechnical Risk

Invisible automation

Weaknesses or gaps in processes that maintain awareness, provide insight and issue alerts regarding the status, activities, and decisions
of automated systems.

Example: No alerting process existed to inform vehicle operators that the Uber SDS had detected a potential hazard in the driving
environment but was initiating action suppression and delaying any automated response (NTSB, 2019a, 2019o).

Governance gaps

Gaps in organizational processes and systems that set standards for safety, monitor safety performance, and initiate action to address
safety deficiencies.

Example: Uber had no safety management system to govern and assure the operational safety of its vehicles, with no overarching
safety plan or standard operating procedures setting out roles, responsibilities, and processes for the analysis and management of risk
in its driving operations (NTSB, 2019a, 2019e).

Regulatory voids

Absence of regulatory requirements, performance standards and associated oversight activities to assure the safe development, testing,
deployment, and operation of automated systems.

Example: The on-road testing of Uber’s SDS was subject to little regulatory oversight with no regulatory systems for State
monitoring of safety performance in Arizona (NTSB, 2019a, 2019e; Wakabayashi, 2018), and only a voluntary and underspecified
process for safety self-assessment at the Federal level, with self-assessments not subject to formal regulatory review (NTSB, 2019a,
2019e, 2019q).

Supervisory degradation

Reduced or inadequate organizational arrangements to support, monitor, and assure the activities of supervising automated systems.

Example: Uber instituted no routine processes or automated system to monitor vehicle operator vigilance and reduced the number
of operators per vehicle from two to one (NTSB, 2019a), reducing the cognitive capacity available in the vehicle to monitor both the
SDS and the driving environment while also removing the opportunity for mutual social reinforcement of appropriate in-car
operator norms and behavior.

Competency limits

Limitations or gaps in the roles, expertise, and experience available for analyzing and managing all aspects of safety across the
development and deployment of an automated system.

Example: Uber did not have a dedicated safety division, team, or personnel with responsibility for managing the operational safety
of its vehicles (NTSB, 2019a, 2019e). General safety responsibilities were combined with operational leadership responsibilities
(NTSB, 2019a) and relevant safety competencies were not defined for key roles (Hart et al., 2018).

patterns of risk that can emerge in AIS (Table IV).
Perhaps most fundamentally, Uber ATG had no for-
malized safety management systems in place (NTSB,
2019e, 2019a) to analyze and manage the operational
risks of its development and testing activities (“gov-
ernance gaps”), and had no dedicated roles with re-
sponsibility for—or expertise in—the management
of operational risk and safety (“competency limits”)
(Hart et al., 2018; NTSB, 2019a; Uber ATG, 2018b).
This allowed fundamental operational risks, such as
automation complacency in vehicle operators (Para-
suraman & Manzey, 2010) and hazards associated

with pedestrians crossing the street, to be largely
overlooked (NTSB, 2019a, 2019b). Vehicle opera-
tors were provided with little insight into the ongo-
ing activities or decisions of the automated systems
they were responsible for monitoring (“invisible au-
tomation”), with no alerts provided to the opera-
tor when the SDS detected a potential hazard but
initiated action suppression (NTSB, 2019a, 2019o).
And, while active monitoring and supervision of
the SDS by an operator was a critical safety func-
tion, these activities were not themselves routinely
monitored within the organization (NTSB, 2019a,

 15396924, 2022, 9, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/risa.13850 by T

est, W
iley O

nline L
ibrary on [21/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2008 Macrae

2019f), and the capacity for monitoring vehicle be-
havior had been degraded by reducing the number of
operators in each vehicle (Bort, 2018a; NTSB, 2019a)
from two to one a few months before the collision
(“supervisory degradation”). More broadly, devel-
opment and testing of Uber’s SDS on public roads
was subject to little regulatory oversight (“regulatory
voids”) at both the State (NTSB, 2019a, 2019e; Wak-
abayashi, 2018) and Federal levels, which focused in-
stead primarily on voluntary safety self-assessment
(NTSB, 2019a, 2019e).

4.3. Technological Sources of Risk

AIS are built on technologies with specific ca-
pabilities and constraints, and which provide dif-
ferent affordances for interaction and use—and for
failure (Barley, 2020; Beane & Orlikowski, 2015).
These technological properties can act as sources
of risk when they result in AIS failing to perform
as intended, behaving in unexpected ways or be-
coming challenging to control. The Uber AV acci-
dent resulted from a complex web of technical fail-
ures and limitations including problems with the car’s
ability to perceive objects and predict the path of
pedestrians, action suppression rules that delayed
the car’s responses to perceived hazards, and con-
straints on emergency braking functions. These tech-
nological weaknesses created major gaps in the car’s
ability to operate safely. Theories of technological
risk in sociotechnical systems focus on problems that
emerge in the design, use, and control of technical
objects (Collingridge, 1996; Leveson, 2011). Techno-
logical weaknesses can emerge during design and de-
velopment: coding errors or mistaken assumptions
may become embedded in technical objects (Amodei
et al., 2016; Leveson & Turner, 1993), technologi-
cal reliability and robustness may be poorly engi-
neered or not well understood (Cummings, 2021;
Downer, 2009; Kletz, 1994), and design features may
complicate or preclude effective human–machine in-
teraction (Carroll, 2003; Norman, 2013). Similarly,
failures can emerge in the monitoring and control of
technologies: performance standards may be poorly
defined or misapplied, and monitoring processes may
be degraded or focus on inappropriate aspects of per-
formance (Leveson, 2004, 2011), allowing technical
systems to move beyond the boundaries of safe oper-
ation (Dekker, 2011; Rasmussen, 1997).

Limitations in technological capabilities and con-
trol defined key aspects of the Uber AV accident and
indicate a set of technological patterns of risk that

can emerge in AIS (Table V). Uber’s developmen-
tal vehicles were reported to regularly encounter on-
road situations they found challenging (Bort, 2018a;
Nguyen, 2017; Wakabayashi, 2018; Wakabayashi &
Conger, 2018), with relatively high levels of damage
and frequent safety events (Bort, 2019; Efrati, 2018c),
suggesting a degree of immaturity in some elements
of the SDS that needed further development be-
fore operating on public roads (“automation imma-
turity”). Key safety capabilities of the vehicles were
constrained to optimize overall performance (“capa-
bility constraints”), with the SDS designed to be un-
able to apply emergency brakes when it calculated
a crash was imminent, to reduce the frequency of
sudden braking events (Bort, 2018a; NTSB, 2019a).
The design of the perception and prediction systems
inadvertently disguised or complicated the presence
of potential hazards (“hazard masking”): when the
SDS changed the classification of an object the his-
torical path data for that object was no longer avail-
able for predicting its trajectory (NTSB, 2019b); and
the SDS was not designed to assume pedestrians in
the road might be trying to cross it, and instead at-
tempted to predict the path of “jaywalking” pedestri-
ans by continually tracking their movement (NTSB,
2019a, 2019b). The SDS was also designed to tem-
porarily ignore perceived hazards so as to smooth
the car’s motion (“sensitivity smoothing”), delaying
avoidance action for 1 second in an attempt to re-
duce excessive braking (Efrati, 2018a; NTSB, 2019a).
And the vehicle relied on its experimental autonomy
system to provide all technical collision avoidance
functionality; the simpler on-board Volvo emergency
braking system was disabled (“autonomy reliance”)
(NTSB, 2019a).

4.4. Epistemic Sources of Risk

Developing and operating AIS depends upon
building and maintaining knowledge of how a sys-
tem is working—and how and why it might fail.
Epistemic challenges can act as sources of risk when
this knowledge is partial, incorrect, or out of date,
allowing pockets of ignorance to hide unexpected
threats. A variety of epistemic processes shaped
the Uber accident, which involved an experimental
vehicle that was being used to test and understand
system performance—activities which were report-
edly constrained by delays in reviewing surprising
incidents, gaps in the exploration of on-road expe-
riences, and limitations on accessing safety-relevant
data. Theoretical perspectives on epistemic sources
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Sociotechnical Risk and Autonomous Systems 2009

Table V. Definitions of Technological Patterns of Risk in Autonomous and Intelligent Systems and Illustrative Examples from Public
Reporting on the Uber Autonomous Vehicle Crash

Technological Patterns of Sociotechnical Risk

Automation immaturity

Automated systems regularly encounter situations, objects or hazards that are not recognized or are beyond the system’s capabilities,
leading to frequent failures.

Example: The Uber automated driving system reportedly experienced high levels of disengagements and required regular human
intervention during on-road testing (Bort, 2018a; Wakabayashi, 2018). “Raw miles per intervention” in the three weeks before the
accident was reported as one disengagement every 1–3 miles and a vehicle was reportedly being damaged on average almost every
other day in the month before the accident (Efrati, 2018c). Frequent braking and swerving by the SDS reportedly gave a vehicle
operator mild concussion in late 2017 (Bort, 2018d).

Capability constraints

Technical features that reduce or constrain the safety capabilities of a system in order to optimize other aspects of system performance,
efficiency, or experience.

Example: The Uber SDS was designed to be unable to activate emergency braking in circumstances where a collision was
determined to be imminent, to reduce the frequency of sudden braking (NTSB, 2019a, 2019b). This decision reportedly coincided
with the development of new “rider-experience metrics” that targeted no more than one “bad experience” per ride (Bort, 2018a).
Uber was reported to have initially disabled both emergency swerving and braking after these metrics were announced but soon
reinstated the former (Bort, 2018a).

Hazard masking

Technical processes or features that result in hazards being inadvertently hidden, disguised, or rendered ambiguous.

Example: When the Uber SDS changed the classification of an object it was unable to access historical path data for the object,
meaning that a reclassified object was perceived as a new nonpersistent object with no movement history available to predict a
trajectory (NTSB, 2019a, 2019b). The SDS was also not designed to assign a goal to pedestrians walking in the road outside an
official crossing area (jaywalkers), so the system did not assume that a pedestrian in the road might be trying to cross it, and could
only attempt to predict the path of a pedestrian based on tracking movement (NTSB, 2019a, 2019b).

Sensitivity smoothing

Technical features that attenuate warning signals or reduce responses to perceived hazards to smooth the behavior of an automated
system.

Example: When the SDS detected a hazard, an action suppression rule delayed any planned motion for 1 second to reduce
unnecessary extreme maneuvers in case it was a false alarm or the hazard resolved itself (NTSB, 2019a, 2019b). If the hazard was still
deemed to be present after 1 second then the action would be carried out and an audible alert would be provided to the vehicle
operator that action was being taken.

Autonomy reliance

Dependance on autonomous functionality for technical safety protections and controls, to the exclusion of other lower-technology
components that could provide safety redundancy.

Example: The Uber vehicle relied solely on its SDS to provide all hazard detection and avoidance functions, and the in-built and
independent Volvo emergency braking functions were disabled (NTSB, 2019a). It was established that, if active, this relatively simple
and reliable system would likely have prevented a fatal collision (NTSB, 2019a).

of risk in sociotechnical systems assume that surpris-
ing failures emerge from gaps or errors in existing
knowledge of how systems work (Downer, 2011,
2019; Macrae, 2009; Smithson, 1989, 1990). These
may be deep and fundamental, where foundational
scientific theories or technical models are erroneous

or entirely absent (Downer, 2011, 2019). Or they
may be more localized, where working knowledge
or practical models within a particular context
are wrong or incomplete (Macrae, 2009, 2014;
Turner, 1978; Weick & Sutcliffe, 2001). Epistemic
challenges are amplified by complex, innovative
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Table VI. Definitions of Epistemic Patterns of Risk in Autonomous and Intelligent Systems and Illustrative Examples from Public
Reporting on the Uber Autonomous Vehicle Crash

Epistemic Patterns of Sociotechnical Risk

Learning lag

Operational and developmental activities exceed the capacity, systems, and resources available to analyze and learn from those
activities and the surprises that they generate.

Example: Several significant near-miss events, including one test vehicle driving on the pavement and another nearly causing a
collision with a vehicle in another lane, were reportedly not reviewed for several days after they occurred, until they were pursued by
an experienced manager who raised concerns that the fleet size was larger than the resources available to review and analyze the
events being generated (Efrati, 2018c).

Operational disengagement

Limited or reduced efforts to gather data on, engage with, and make use of insights drawn from the operational experiences of people
interacting with an autonomous system.

Example: Uber was reported to have disbanded a small group of drivers dedicated to stressing the cars in particularly challenging
situations (Wakabayashi, 2018), appears not to have built strong information sharing processes between vehicle operators and
system developers (Bort, 2018a; Efrati, 2020; Hart et al., 2018; NTSB, 2019e), and moved from two to one operator per vehicle
(NTSB, 2019a), reducing in-car capacity to identify and record interesting or surprising vehicle behavior.

Insensitivity to experience

Failure to anticipate, notice, or effectively explore the safety implications of events experienced during developmental, testing, or
operational activities.

Example: Vehicle operators regularly reported encountering pedestrians jaywalking during testing operations (NTSB, 2019a) and
scanning for pedestrians and jaywalkers was a key part of operator training (NTSB, 2019a), clearly demonstrating that “Pedestrians
crossing a road midblock should be an anticipated safety risk when testing in urban environments” (NTSB, 2019a, p.39), but the SDS
capabilities and protections around handling pedestrians crossing the road outside of crossing areas remained underdeveloped.

Simulatory inattention

Peripheral or limited use of different forms of simulation to explore, test, train, and improve the behavior of an autonomous system.

Example: Developing and using software to simulate and test car behavior was reportedly not a central part of the Uber AV
development and testing program (Bort, 2018a; NTSB, 2019e): the development of vehicle self-driving software was reportedly
prioritized over the development of simulation software, with simulation engineers paid less than colleagues working in other areas
and incompatibilities between simulation software and self-driving software complicating efforts to run simulation tests (Efrati,
2018b, 2019b, 2020).

Competitive secrecy

Reluctance to create or share safety data due to fears it may disclose commercially sensitive information or reveal performance
weaknesses in a competitive arena.

Example: Sharing of safety data appears to have been limited within Uber, with an experienced manager recommending a few days
before the accident that details on safety events should be circulated within the organization and access to the safety incident
database should be expanded (Efrati, 2018c), and staff were reportedly on occasion dissuaded from seeking out data related to
limitations and gaps in safety performance and described that suggestions to compile details of safety requirements and tests were
not well received (Bort, 2018d; Efrati, 2018c).

technologies that create regular opportunities
for surprise (Downer, 2011; Perrow, 1999), and
by social dynamics that promote the differential
distribution of ignorance—such as professional
boundaries or organizational silos—or that pur-
posefully produce secrecy, such as the withhold-
ing of confidential information (Burrell, 2016;

Costas & Grey, 2016; McGoey, 2019; Turner, 1978;
Vaughan, 1996).

Epistemic challenges and limitations character-
ized key aspects of the Uber AV accident, and in-
dicate important epistemic patterns of risk that can
emerge in AIS (Table VI). The development of AIS
such as an autonomous vehicle involves learning
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about the functioning, behavior and limitations of
complex new technologies that are inherently chal-
lenging to understand (Ford, 2018; NTSB, 2019a).
These processes of learning appear to have been
hampered by delays and limitations in the capacity
to analyze and review unexpected operational events
(“learning lag”), with on-road testing activities re-
portedly exceeding the analytical capacity to triage
and review events (Efrati, 2018c). Opportunities to
gather rich information and insights into the on-road
behavior of vehicles were seemingly not fully en-
gaged with (“operational disengagement”), with gaps
and weaknesses identified in communication chan-
nels between vehicle operators and system develop-
ers (Bort, 2018a; Efrati, 2020; Hart et al., 2018; NTSB,
2019e), a specialist team of vehicle stress-testers be-
ing disbanded (Wakabayashi, 2018), and each car
having only one operator to notice and record in-
teresting vehicle behavior while also monitoring the
SDS and road environment (NTSB, 2019a). There
was an apparent insensitivity to events and expe-
riences encountered during vehicle testing, which
should have provided valuable opportunities to learn
about risks and improve safety (“insensitivity to ex-
perience”). For example, safety drivers reported that
jaywalking pedestrians were regularly encountered
by test vehicles (NTSB, 2019a), but these events do
not appear to have received close scrutiny within
the organization or triggered focused efforts to im-
prove the way the SDS recognized or handled this
fundamental hazard of urban driving. The develop-
ment and testing of the SDS relied heavily on driv-
ing cars on public roads and simulation techniques
were reportedly not valued as a fundamental part
of the development program (“simulatory inatten-
tion”). As a result, vehicle and software behavior
appears not to have been systematically or exten-
sively explored through computer simulation prior to
running cars on public roads (Efrati, 2018b, 2019b,
2020; NTSB, 2019e). Finally, there were reports of
reluctance to openly share safety-relevant informa-
tion widely across the organization, particularly when
that information might be perceived to question vehi-
cle or organizational performance (“competitive se-
crecy”), with some staff reportedly dissuaded from
developing safety requirements or requesting data
(Bort, 2018d; Efrati, 2018c).

4.5. Cultural Sources of Risk

Cultural patterns of thinking and acting influ-
ence how AIS are developed and operated within

organizations—and how failures emerge and are in-
terpreted. Cultural characteristics can act as sources
of risk by supporting behaviors and beliefs that
move a system toward the limits of safe opera-
tion, and which lead to warning signs being misin-
terpreted, minimized, missed, or ignored. A range
of cultural factors were reportedly associated with
the Uber accident, including a focus on inappropri-
ate performance metrics, production pressures and
a perceived race for corporate survival, the disem-
powerment of operational staff, and faulty assump-
tions regarding the efficacy of human vigilance and
the risks of on-road testing. Theoretical accounts of
cultural risk in sociotechnical systems explain how
collective practices, norms, values, and assumptions
deeply shape organizational behavior and what or-
ganizations pay attention to—and what they ignore.
Culturally shaped patterns of communication can
disempower certain groups and disincentivize people
from raising concerns (Morrison & Milliken, 2000;
Turner, 1978; Weick & Sutcliffe, 2003). Collective val-
ues and beliefs can focus organizational attention
on particular data and metrics while systematically
discounting others (Hopkins, 1999a, 2005; Turner &
Pidgeon, 1997). Shared norms can gradually shift to
accommodate and normalize deviance from accept-
able standards (Vaughan, 1996) and shared practices
can drift away from established and understood ways
of working (Snook, 2000). And cultural assumptions
about how systems work can generate unwarranted
optimism and misplaced trust (Turner, 1979; Turner
& Pidgeon, 1997), and create disjunctions between
what people believe is happening in a sociotechnical
system and what actually is (Hopkins, 1999b; Pidgeon
& O’Leary, 2000; Turner, 1994).

A range of cultural processes were associated
with the Uber AV accident, and indicate several
cultural patterns of risk that can emerge in AIS
(Table VII). Considerable leadership attention was
focused on improving performance against a widely
reported metric of the number of autonomous miles
driven (Bort, 2018a; Uber, 2018a)—a metric largely
unrelated to progress in developing underlying self-
driving technologies (Efrati, 2019a)—and the value
placed on amassing autonomous miles appears to
have influenced a range of key operational decisions
(“performative production”) (Bort, 2018d). Uber
ATG was working to meet extremely ambitious tar-
gets to bring a consumer-ready driverless taxi to mar-
ket (Efrati, 2018a; Wakabayashi, 2018), an ambition
linked to publicly espoused beliefs that this was nec-
essary for corporate survival (Carson, 2016) and fears
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Table VII. Definitions of Cultural Patterns of Risk in Autonomous and Intelligent Systems and Illustrative Examples from Public
Reporting on the Uber Autonomous Vehicle Crash

Cultural Patterns of Sociotechnical Risk

Performative production

Organizational attention and activities focus on maximizing performance on narrow public metrics which do not represent underlying
quality, safety, or improvement of the system.

Example: There was reportedly a significant focus within Uber on increasing on-road autonomous miles driven, a metric which was
widely reported and publicly focused on in the AV industry at the time (Marshall, 2018). Uber later acknowledged this metric may
create “perverse incentives” (Uber, 2018a, p66) and this focus was reported to have influenced organizational activities including a
shift to using only one operator per vehicles and reported pressures on vehicle operators to maximize mileage (Bort, 2018a, 2018d).

Existential pressure

Overambitious targets and production pressures arising from fears that the existence of the organization is at stake in a competitive
race to market.

Example: Uber ATG was reportedly aiming to meet an ambitious internal goal of launching a driverless taxi service by the end of
2018 (Efrati, 2018a; Wakabayashi, 2018). In 2016 the former Uber CEO had described autonomous vehicles as an existential threat
for the company, and that if Uber was not first or one of the first to market then “Uber is no longer a thing” (Carson, 2016). The new
CEO was reportedly considering shutting down the AV unit (Bort, 2018a), and the AV unit’s leaders were reportedly focused on
improving the vehicle to impress the new CEO on a test drive (Bort, 2018a) alongside considerable attention on improving
passenger experience, with new “rider-experience metrics” reportedly issued in November 2017 that allowed only one “bad
experience” per ride (Bort, 2018a). A few days later emergency braking capabilities were removed from the SDS to reduce
unnecessary extreme maneuvers and justified on the basis of safety to avoid surprising other road users (Bort, 2018a).

Concern quashing

Staff disempowered or discouraged in raising safety concerns, speaking up, or challenging assumptions due to fears of punitive
responses or lack of support.

Example: Uber ATG staff were not empowered or authorized to “stop the line” and ground the fleet of test vehicles if they were
concerned that the vehicles were not safe (Efrati, 2018c), though this was viewed as standard practice at other AV developers. There
were reports that staff were dissuaded from or fearful of raising concerns and that speaking up to question decisions was not
encouraged by some leaders (Bort, 2018a, 2018b, 2018d), and nonpunitive channels for reporting safety concerns had not been
implemented before the accident (Hart et al., 2018; Uber, 2018a).

Developmental disintegration

Norms and values that privilege rapid, widely distributed development and public-domain testing and deprioritize integrated safety
oversight and assurance.

Example: Uber ATG had not developed a set of clear requirements or an integrated system to review, approve, and monitor the use
of test vehicles on public roads (Efrati, 2018c; NTSB, 2019b; Uber, 2019e) and reportedly had multiple teams working on different
aspects of the vehicle with limited coordination between different testing activities (Bort, 2018a).

Presumptive reliability

Assumptions and beliefs that human vigilance is effective for monitoring complex automated systems for long periods of time and
requires little support or monitoring.

Example: The Uber SDS was critically dependent on the vigilance and attentiveness of a human operator to detect and intervene
when it failed (NTSB, 2018). At the same time, the vigilance, behavior, and attentiveness of operators was not routinely monitored
via the vehicle’s inward-facing cameras, which were only reviewed on an ad hoc basis with no records kept of these reviews, and
vehicle operators were expected to work on their own monitoring the SDS for relatively long periods (NTSB, 2019a; 2019e).

that the self-driving unit may be shut down (Bort,
2018a). This appears to have created considerable
production pressures (Bort, 2018a; Efrati, 2018c) and
a premature focus on optimizing passenger expe-

rience (Efrati, 2018a) (“existential pressure”). Cul-
tural norms and communication patterns seemingly
minimized the impact of safety concerns: engineers
and operational staff did not have authority to “stop
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Sociotechnical Risk and Autonomous Systems 2013

the line” and pause testing operations if they identi-
fied problems (Efrati, 2018c), serious safety incidents
could reportedly take days to review (Efrati, 2018c),
and reports indicated that some leaders were reluc-
tant to engage with dissenting voices and concerns
(Bort, 2018a, 2018b, 2018d) (“concern quashing”).
Corporate values and norms prioritized rapid devel-
opment and real-world testing to find and fix prob-
lems in the SDS, and deemphasized the importance
of integrated, proactive and centralised risk man-
agement (Efrati, 2018c; NTSB, 2019a, 2019e; Uber,
2018b) (“developmental disintegration”). And the
use of on-road testing appears to have been heavily
predicated on unchallenged assumptions about the
reliability and safety of human vigilance over pro-
longed periods of time (NTSB, 2018, 2019a), result-
ing in little monitoring of or support for operator vig-
ilance (NTSB, 2019e) (“presumptive reliability”).

4.6. A Note on Sociotechnical Interactivity

While the primary purpose of the analysis de-
veloped here is to conceptually unravel and differ-
entiate these five domains of sociotechnical risk, the
SOTEC framework also provides a foundation for
understanding the complex interactions that can oc-
cur between different sociotechnical processes in the
emergence of AIS failures. Each of these five do-
mains of sociotechnical risk is deeply interrelated to
and constitutive of the others, with the patterns of
risk identified here amplifying, reinforcing, interact-
ing, and overlapping with one another (Fig. 1). For
instance, in the Uber AV accident, the cultural pat-
terns of existential pressure and performative produc-
tion seem to have reinforced one another, as con-
cerns about corporate survival were aligned with a
focus on increasing autonomous mileage. These cul-
tural patterns, in turn, appear to have been closely
associated with the organizational pattern of super-
visory degradation and the technological pattern of
sensitivity smoothing: an eagerness to increase the
quantity of autonomous miles driven was reportedly
associated with the company’s decision to reduce the
number of operators required per vehicle from two
to one (Bort, 2018a, 2018d); and the focus on cre-
ating a more comfortable passenger experience that
would be ready to launch as a service was reportedly
associated with the implementation of action sup-
pression functions in an attempt to reduce the fre-
quency of uncomfortable excessive braking events.
Similarly, important self-reinforcing interactions ap-
pear to have unfolded between the cultural pattern

of presumptive reliability, which allowed the persis-
tence of a general belief in the sufficiency of human
vigilance, and the structural pattern of vigilance de-
pendencies, which built a reliance on sustained hu-
man vigilance deep into the architecture of the ve-
hicle development and testing program. In turn, the
emergence of these mutually reinforcing patterns ap-
pears to have been enabled by the organizational pat-
tern of governance gaps, one expression of which was
a lack of sufficient operational safety expertise or
oversight which meant that basic human reliability
risks associated with the work of safety drivers were
overlooked. Governance gaps appear to have further
contributed to and interacted with the emergence
and persistence of the epistemic pattern of insensi-
tivity to experience, in which regularly encountered
and easily anticipated hazards—such as pedestrians
crossing the road outside a crossing area—were not
recognized as a significant risk worthy of specific
risk mitigations. A full exploration of these many so-
ciotechnical interactions underlying the Uber AV ac-
cident is beyond the immediate scope of this article,
but the SOTEC framework provides an initial con-
ceptual architecture and language within which these
complex sociotechnical interactions can be character-
ized and analyzed across structural, organizational,
technological, epistemic, and cultural domains of so-
ciotechnical risk.

5. DISCUSSION: MANAGING
SOCIOTECHNICAL RISK AND BUILDING
INFRASTRUCTURES OF LEARNING IN
AUTONOMOUS AND INTELLIGENT
SYSTEMS

Recent innovations have created an urgent need
to better understand the sociotechnical sources of
risk that can lead to catastrophic failures in au-
tonomous and intelligent systems, in order to develop
models that can inform risk analysis and underpin
practical systems of risk management, governance,
and learning. This analysis of Uber’s fatal self-driving
accident explores and defines five interrelated do-
mains of sociotechnical risk in AIS—structural, or-
ganizational, technological, epistemic, and cultural—
forming an overarching SOTEC framework that
offers a complementary set of lenses through which
particular patterns of sociotechnical risk can be iden-
tified and analyzed. Risk analysis methods and risk
management processes applied to AIS will need to
be able to accommodate this diverse spectrum of so-
ciotechnical risk, and the particular patterns of so-
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2014 Macrae

Fig 2. Indicative Patterns of Sociotechnical Risk in Autonomous and Intelligent Systems Across the Five Domains of the SOTEC Risk
Framework

ciotechnical risk identified in this analysis offer an
initial set of indicators that may be useful in identi-
fying areas of emerging risk in current AIS develop-
ment and deployment activities (Fig. 2).

This SOTEC framework has been built from
an empirically grounded and theoretically informed
analysis of the widely reported crash of a single
developmental autonomous vehicle operating on
public roads. Nonetheless, this is intended to provide
an initial overarching and more generally applicable
framework that defines the fundamental sources and
patterns of sociotechnical risk that may threaten
safety in a range of autonomous and intelligent sys-
tems, spanning the entire AIS lifecycle from design
and development to implementation and operation.
As stated earlier, this framework represents an early
phase in a process of theorizing, rather than pro-
viding a full and final theory (Weick, 1995), and a
range of further empirical and analytical work will
be needed to examine the extent to which this initial
framework and its constituent patterns can explain
AIS risk and failure in contexts such as healthcare,
transport, or finance. While the Uber self-driving
accident is currently unique in terms of the extent
and depth of public reporting on the event and the
conditions that surrounded it, a number of illustra-
tive examples indicate how aspects of the SOTEC
framework may be applicable and useful in a range
of different settings. Structural sources of risk such

as disruption amplifiers and failure cascades may
help explain the 2010 “flash crash” in US equity
markets, when the rapid actions and unexpected
interactions of automated trading algorithms caused
a trillion-dollar stock market crash that lasted barely
36 minutes (CFTC & SEC, 2010). Organizational
sources of risk such as governance gaps and regula-
tory voids were evident in the findings of a regulatory
sandbox on the use of artificial intelligence in health-
care, particularly in the initial implementation and
verification of such systems in clinical settings (CQC,
2020). Technological sources of risk such as hazard
masking and automation immaturity may also be
applicable to machine learning failures in healthcare,
such as when a predictive model developed to make
recommendations about whether to admit pneumo-
nia patients to hospital deemed patients who also
had a history of asthma to be of lower risk (when in
fact the opposite is true). In this case the machine
learning algorithm had correctly identified and learnt
a pattern in the data—that patients with asthma and
pneumonia had better outcomes than those with
just pneumonia—but on close investigation this was
due to localized hospital practices in which patients
with asthma and pneumonia were always proactively
admitted straight to intensive care to prevent risky
complications (Cabitza, Rasoini, & Gensini, 2017).
Epistemic sources of risk such as competitive se-
crecy may help to explain the reported reluctance of
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Sociotechnical Risk and Autonomous Systems 2015

autonomous vehicle developers to share detailed
data across the industry (Marshall, 2018); and insen-
sitivity to experience may help explain the repetition
of a seemingly near-identical fatal accident sequence
by two Autopilot-guided Teslas driving under the
side of a tractor-trailer in 2016 and 2019 (NTSB, 2017,
2020b). And cultural sources of risk such as concern
quashing and performative production may be ev-
ident in attempts by healthcare chatbot developers
to claim equivalent performance to human clinicians
and to publicly dismiss concerns raised by concerned
doctors about diagnostic errors (Iacobucci, 2020).
Taken together, these brief examples point to some
of the ways that the SOTEC framework may be
applied, refined, elaborated, and revised in future
across a diverse range of contexts and the whole
lifecycle of AIS development and use. More immedi-
ately, the analysis developed here points to a number
of theoretical implications regarding how risk and
safety are understood in AIS, as well as a set of
practical implications for developing infrastructures
for managing and learning from AIS failures.

5.1. Theoretical Implications for Understanding
Risk and Safety in AIS

The analysis developed in this article has five key
theoretical implications for understanding, analyzing,
and managing risk in AIS.

5.1.1. The Development of Epistemic Capacity

First, AIS safety is contingent on organizational
capacities for learning. Surprising and harmful fail-
ures occur when AIS developmental or operational
activities exceed an organization’s capacity to under-
stand and learn from those activities (Downer, 2011).
As illustrated by the analysis developed here, a focus
on the rapid development and deployment of AIS
can generate a learning lag, where operational and
developmental activities outstrip the organizational
systems and resources that are available to analyze
and learn from those activities. These weaknesses in
epistemic capacity can be amplified by tendencies to-
ward competitive secrecy which reduce the sharing
or creation of sensitive safety data, and by failures to
properly value or engage with a variety of sources of
knowledge such as simulation and practical insights
from front-line system operators—who may have a
relatively low status in an organization (Weick, Sut-
cliffe, & Obstfeld, 1999). Taken together, this implies
that the speed and scale of AIS development and de-

ployment should be determined by the learning ca-
pacity of the sociotechnical system that an AIS is sit-
uated within: operational activity should be scaled to
epistemic capacity. Or, as one concerned Uber man-
ager bluntly recommended a few days before the fa-
tal accident, “do not drive the cars more than is nec-
essary” (Efrati, 2018c). Managing risk in AIS will
therefore depend on developing more sophisticated
ways of assessing and managing the mechanisms that
underpin social and organizational learning (Macrae,
2014a, 2014b; Waterson, 2020), just as much as it de-
pends on developing more sophisticated mechanisms
of machine learning (Stilgoe, 2018).

5.1.2. The Management of Sociotechnical
Complexity

Second, AIS safety depends on the systematic
management of sociotechnical complexity. Many
AIS technologies are inherently complex, and the
practical activities involved in developing them are
too. This complexity creates ideal conditions for the
emergence of unexpected failures that are hard to
understand and difficult to contain (Perrow, 1999;
Weick & Sutcliffe, 2001). As the analysis developed
here indicates, the highly complex sociotechnical
structures of AIS can act as disruption amplifiers
that encourage small disruptions to enlarge rapidly,
can facilitate rapid failure cascades that are hard
to identify or shut down, can build in vigilance de-
pendencies that require impossibly perfect human
performance, and can create test permeabilities that
allow new or updated systems to be rapidly and
regularly released into the public domain. Risk man-
agement may therefore need to focus on identifying
the most problematic thickets of sociotechnical com-
plexity in AIS, and develop mechanisms to decouple,
modularize, or otherwise simplify the technolog-
ical and organizational sources of that complex-
ity (Perrow, 2011)—such as separating functional
stages of deep learning diagnostic processes (Fauw
et al., 2018), creating institutional gatekeepers to
review and approve change requests, or instituting
“circuit breakers” to prevent failures cascading
through a system (Macrae, 2019b; SEC, 2010). Iden-
tifying and understanding these complex sociotech-
nical interactions may be supported by further elab-
oration of the SOTEC framework, with a particular
focus on exploring the interlinkages between differ-
ent patterns of sociotechnical failure, such as those
highlighted previously. A valuable focus for future
research may therefore involve developing better
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models of how different patterns of failure in AIS
can reinforce and amplify one another, alongside the
development of more theoretically sophisticated ex-
planations of how sociotechnical patterns of failure
become entangled in different contexts, and under
what conditions these entanglements may represent
higher-order or more systemic patterns of risk.

5.1.3. The Integrated Governance of Development
and Operation

Third, AIS safety requires risk management
strategies that integrate the governance of both the
development and operation of AIS. Experimental
technologies can pose unique risk management
challenges by generating new and surprising system
behaviors that are beyond the bounds of prior expe-
rience, and which therefore require continual explo-
ration and renegotiation of acceptable limits of per-
formance (Vaughan, 1996). AIS are likely to present
particular challenges for risk management because
the experimental and developmental phases of AIS
can often involve prolonged periods of “real-world”
operational testing, verification, and optimization to
explore how systems actually perform in situ—which
therefore combines some aspects of system devel-
opment and system operation. For self-driving cars
this may involve extensive phases of on-road testing
in the public domain. For clinical diagnostic systems
it may involve long periods of testing or verification
in different clinical settings. Moreover, one of the
proposed benefits of many AIS is that they can con-
tinually learn or be updated so as to adapt to chang-
ing conditions and iteratively improve performance
over time. This similarly means that the processes
of developing, training, and optimizing AIS can
become permanently intermixed with the ongoing
operation of these systems. This blending of devel-
opment activities (such as training machine learning
algorithms to accurately identify pedestrians) with
operational activities (such as running self-driving
cars for thousands of miles on public roads) creates
a range of risk management challenges. In particular,
this integration of developmental and operational
AIS activity involves taking some sort of incomplete
experimental technology (Stilgoe, 2020) that rou-
tinely produces novel, unexpected, and surprising
behaviors and regularly operating it in complex,
dynamic, and inherently hazardous real-world set-
tings in close proximity to vulnerable members of
the public. As illustrated by the analysis developed
in this article, integrating AIS developmental and

operational activities—such as intensively operating
developmental self-driving cars on public roads—can
create significant governance gaps, regulatory voids,
and competency limits. Safety governance processes
set up initially for technical experimentation may be
unable to handle the increased complexity and soci-
etal risks created by large-scale operational activities
in the public domain. Regulatory requirements may
be inappropriate or entirely absent in these new
hybrid phases of intensive AIS “developmental-
operations” that are beginning to occur in various
public spaces. Similarly, organizations and regulators
may not have the safety expertise and oversight roles
that are needed to properly engage with the broad
spectrum of risks associated with the intermixing
of AIS development, deployment, and operation.
Accordingly, the blending of developmental and op-
erational activities that is a characteristic of the AIS
lifecycle points to the importance of developing more
integrated, adaptive and reflexive approaches to the
management and regulation of risk in AIS. Adap-
tive and reflexive systems of risk governance are
based on processes that allow governance processes
themselves to be regularly reexamined and adapted
by learning from experience (Brass & Sowell, 2020;
McCray, Oye, & Petersen, 2010). It will therefore
be important to explore how hybrid and integrated
models of risk governance—that span the entire
spectrum of AIS development and operation—can
be adaptively developed and implemented.

5.1.4. The Creation of Cultures of Openness and
Inquiry

Fourth, AIS safety depends on people noticing,
generating, discussing, interrogating, and acting on
weak signals of emerging risk. Most AIS remain in
the early stages of development and adoption and
have not yet experienced many of the failure modes
or harmful outcomes that these systems have the po-
tential to produce. As such, neither collective mem-
ory nor formal models are likely to capture the full
array of warning signs that may signal the devel-
opment of catastrophic failure (Schulman, 1993). It
is therefore important to understand how organiza-
tional cultures can be built that encourage people
to speak up and challenge assumptions, enable open
and collective inquiry into early signals of risk, and
develop well-specified fears of specific forms of fail-
ure (Macrae, 2014b; Weick & Sutcliffe, 2001). As the
analysis developed here indicates, it will be partic-
ularly important to understand what these cultures
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Sociotechnical Risk and Autonomous Systems 2017

might look like in highly competitive and technology-
oriented AIS organizations, in which developmental
disintegration may emerge through the cultural pri-
oritization of rapid development and deployment at
the expense of carefully integrated safety analysis;
and where there may be broad-based presumptions
of human reliability that preclude more critical ex-
ploration and management of the risks of human–
machine interaction. This analysis also points to the
importance of better understanding the precursors
and consequences of cultures in which existential
pressures and fears of corporate survival overtake
other concerns, in which patterns of concern quash-
ing limit the ability of individuals to speak up, and
in which organizational attention and effort becomes
focused on performative production to meet external
metrics of progress.

5.1.5. The Cultural Construction of Technological
Systems

Fifth, AIS safety is shaped by the ways that cul-
tural assumptions and values become inscribed into
technological objects, which can in turn determine
fundamental system capabilities, constraints, and af-
fordances. The cultural characteristics of the organi-
zations that develop and implement AIS cannot be
neatly separated from the technological character-
istics of the resulting systems (Leonardi & Barley,
2010). This is starkly illustrated by the Uber accident,
where an organizational culture that appears to have
systematically overlooked signals of emerging danger
produced a self-driving system that was itself tuned
to discount warning signs through sensitivity smooth-
ing, had capability constraints which minimized the
initiation of emergency responses, and incorporated
design features that resulted in hazard masking of
vulnerable road users. Understanding the safety of
autonomous and intelligent systems will therefore
depend on building more sophisticated theories of
how technological affordances, cultural values, and
assumptions about risk critically shape the evolution,
design, functionality, and performance of AIS (Craw-
ford & Calo, 2016; Leonardi & Barley, 2008).

5.2. Practical Implications for Governing Risk and
Learning from Failure in AIS

This analysis offers a range of practical implica-
tions for managing risk and learning from AIS fail-
ure. These can be framed as seven interdependent
principles that define key functional building blocks

of a learning infrastructure that support the gover-
nance of safety and the management of risk across
the lifecycle of AIS and that are relevant both within
individual organizations and across entire industries
(Fig. 3).

5.2.1. System Transparency

Transparency is a core principle in AIS safety
(Jobin et al., 2019; Winfield & Jirotka, 2018): it
must be possible to understand what an AIS is do-
ing and why, both to safely interact with and super-
vise these technologies (Sarter et al., 1997; Wortham,
Theodorou, & Bryson, 2017) and to retrospectively
investigate failures (Bryson & Winfield, 2017; Win-
field et al., 2021). Prior discussions of transparency
have focused on the importance of making the
working of intelligent technologies transparent, in-
terpretable, and explainable but the analysis devel-
oped here extends this principle, emphasizing the im-
portance of building mechanisms that can help to
render entire sociotechnical systems transparent—
encompassing core technologies as well as the hu-
man activities and organizational processes that sur-
round them. For instance, organizational processes
and technological methods need to be incorporated
into AIS that can identify pockets of invisible au-
tomation, highlight the potential for failure cascades,
flag the possibility of hazard masking, reveal areas
of supervisory degradation and acknowledge sources
of existential pressure. As such, transparency is not
purely a technical requirement but a sociotechnical
one: to manage risk and learn from failure, the net-
work of organizational decisions, cultural values, and
human interactions that AIS are embedded within
must also be made legible and open to scrutiny
(Kroll, 2018).

5.2.2. Event Recording

To enable learning, AIS need robust mecha-
nisms to record information about failure events and
capture contemporaneous data about the
functioning—and malfunctioning—of systems. A
core component of this should be event recorders—
like the “black boxes” used in the aviation industry—
that capture rich, real-time information about AIS
processes before and during accidents (Murphy &
Woods, 2009; Winfield & Jirotka, 2017). The analysis
here also emphasizes the importance of expanding
the focus and mechanisms of event recording in AIS
to capture more minor safety disruptions from a
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Fig 3. Core components of an infrastructure for governing safety, managing risk and learning from autonomous and intelligent system
failures

diverse range of sources—such as routine opera-
tional monitoring systems that identify and record
deviations from predetermined safety standards,
equivalent to the continuous safety monitoring pro-
grams used in airlines (FAA, 2004; O’Leary, Macrae,
& Pidgeon, 2002), as well as nonpunitive incident
reporting systems for professionals and the public
to report safety events and “near-miss” incidents
(Macrae, 2014a, 2016; McGregor, 2020). These sorts
of event recording mechanisms can help to reveal
the preconditions of sociotechnical failure, and form
the foundational safety data infrastructure that is
needed to underpin the epistemic processes of risk
management and avoid the emergence of learning
lag.

5.2.3. Data Access

Investigating and learning from AIS failures
requires safety-relevant data—such as operational
records, technical designs, and user experiences—to
not only be collected but also to be readily acces-
sible and shared, both within individual organiza-
tions and across entire industries. The fundamental
principle that safety data should be easily accessi-
ble and widely usable by a range of different par-
ties and actors depends on the creation of both a

technical and social infrastructure for data sharing.
Data access partly depends on developing techni-
cal standards and mechanisms to define, record, and
share safety data (McGregor, 2020; NHTSA, 2017;
NTSB, 2017) to help counterbalance tendencies to-
ward competitive secrecy that this analysis indicates
can emerge in AIS. The analysis developed here also
highlights the importance of social and cultural pro-
cesses of trust, fear, and blame—particularly, for ex-
ample, as they emerge in processes of concern quash-
ing. Fear of punishment can seriously impede the
sharing of safety data—both by individuals and or-
ganizations (Dekker, 2016; Macrae, 2016; Reason,
1997). To address this, safety-critical industries such
as aviation strictly separate processes that determine
liability from those of learning: data shared to sup-
port safety improvement cannot be used for punitive
purposes (EU, 2010; Michaelides-Mateou & Mateou,
2010). Similar social agreements and legal frame-
works will be needed to support learning from AIS
failures.

5.2.4. Risk Professionals

The work of managing risk and learning from
failure depends on a range of specialist skills and
expertise, and needs to be led by professionals
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occupying dedicated, impartial, and authoritative
roles. This analysis indicates that significant prob-
lems can arise when competency limits preclude the
effective analysis and management of safety across
developmental and operational phases of AIS. This,
in turn, highlights that managing AIS safety will re-
quire a new cadre of multidisciplinary risk profes-
sionals with the expertise and authority to manage a
broad array of sociotechnical risks. Dedicated safety
teams and leadership roles (e.g., Shepardson, 2020)
will need to be created with the power and remit to
pause organizational activities, investigate and ana-
lyze systems, challenge design and operational deci-
sions and meaningfully oversee the entire lifecycle
of AIS systems (Lehr & Ohm, 2017). This profes-
sional community will need to draw on models, meth-
ods, and knowledge beyond the engineering disci-
plines (Cummings, 2017; Steinhardt, 2015) to encom-
pass human factors, social psychology, organizational
sociology, and a broad range of the safety sciences
(Klinke, Renn, & Goble, 2021; Salmon et al., 2020;
Stanton et al., 2019; Waterson, 2019).

5.2.5. Systemic Investigation

Learning from AIS failures depends on rigor-
ously investigating and addressing the systemic fac-
tors that contribute to safety incidents. The anal-
ysis developed here highlights the importance of
building investigative capacity both within individual
organizations—as a key mechanism to mitigate and
avoid learning lag in the development of particular
AIS—and across entire sectors so that AIS incidents
can be routinely and impartially investigated to im-
prove safety across the entire field (BSI, 2021; Win-
field & Jirotka, 2017; Winfield et al., 2021), just as
they are in sectors like aviation (Macrae, 2014) and
healthcare (Macrae & Vincent, 2014). AIS safety in-
vestigations will need to be led by expert investiga-
tors, conducted solely for the purposes of learning
and draw on investigative methods that allow the en-
tire sociotechnical system to be examined—from the
technical design of machine learning models to the
social characteristics of organizational cultures (Stan-
ton et al., 2019; Waterson, Jenkins, Salmon, & Un-
derwood, 2017), and spanning the full array of so-
ciotechnical domains and processes that this analysis
indicates can be involved in the failure of AIS. Criti-
cally, just as in existing safety-critical sectors, AIS in-
cident investigations will need to be protected from
production pressures and kept entirely independent
from punitive processes that seek to allocate blame

or liability, objectives which can undermine attempts
to make systemic improvements (Civil Aviation Reg-
ulations, 1996; Macrae & Vincent, 2017a). If these in-
vestigative principles are not embedded within AIS
safety investigations then the potential for learning is
likely to be limited, because the processes, insights,
and outputs of an investigation may be shaped by
competitive secrecy, existential pressures, and com-
petency limits that have been explored in this analy-
sis.

5.2.6. Safety Governance

Risk management in AIS requires a systematic
approach to overseeing, monitoring, and governing
safety. The implications of the governance gaps, regu-
latory voids, and developmental disintegration iden-
tified in this analysis reinforces the importance of es-
tablishing Safety Management Systems (CAA, 2014;
Hart et al., 2018; NTSB, 2019a) and formal safety
governance and regulatory infrastructures for AIS.
These should be organized around clear safety ob-
jectives, including precise definitions of the outcomes
that organizations are seeking to avoid (Macrae,
2014b; Schulman, 1993) and the safety criteria appli-
cable to different AIS activities (Cummings, 2021),
and should enable organizations to build integrated
pictures of AIS risk that encompass the full range
of sociotechnical risks and span from design to de-
velopment to deployment. Crucially, safety manage-
ment systems and wider governance systems should
provide an infrastructure to proactively engage with
and act on the safety concerns of all stakeholders im-
pacted by AIS, both inside and outside the organiza-
tion (Klinke & Renn, 2021).

5.2.7. Learning Cultures

Learning from failure is only possible when peo-
ple are able to routinely highlight and openly discuss
potential safety problems without fear of being pe-
nalized (Edmondson, 2018; Reason, 2000). This anal-
ysis emphasizes the need to create organizational cul-
tures around AIS in which people are supported to
speak up with safety concerns and proactively act on
safety issues—and are empowered to rapidly act on
urgent problems (Weick & Sutcliffe, 2001). Patterns
such as concern quashing and operational disen-
gagement characterized in this analysis particularly
point to the importance of building a “just culture”
around AIS safety (Dekker, 2016; Reason, 1997), in
which people are able to share safety concerns and
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information secure in the knowledge they will not be
unfairly blamed or punished. Building a just culture
will involve establishing norms, policies, rules, and
structures that entirely separate safety improvement
responsibilities from processes that seek to appor-
tion liability or blame (Braithwaite, 2011; EU, 2010;
Macrae & Vincent, 2017b).

6. CONCLUSION

The fatal 2018 Uber self-driving crash repre-
sents a watershed moment in AIS safety. Reana-
lyzing this event reveals the inherently sociotech-
nical nature of risk in AIS and allows the devel-
opment of a theoretically informed and empirically
grounded overarching framework that characterizes
key sociotechnical sources and patterns of risk in
AIS. This analysis highlights a set of theoretical chal-
lenges that will need to be addressed as AIS be-
come more widespread, and indicates the importance
of building infrastructures of learning that can sup-
port the analysis, management, and governance of
risk in AIS. Perhaps most fundamentally, this analysis
stresses the need for the analysis and management of
risk in AIS to be approached as a fundamentally so-
ciotechnical problem that encompasses the full range
of human, social, cultural, and organizational entan-
glements that technologies of autonomy and intel-
ligence necessarily emerge from and are embedded
within.
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